Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 41
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
2.
Plants (Basel) ; 13(2)2024 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-38256832

RESUMO

The mechanical damage of plant tissues leads to the activation of methanol production and its release into the atmosphere. The gaseous methanol or vapors emitted by the damaged plant induce resistance in neighboring intact plants to bacterial pathogens but create favorable conditions for viral infection spread. Among the Nicotiana benthamiana methanol-inducible genes (MIGs), most are associated with plant defense and intercellular transport. Here, we characterize NbMIG21, which encodes a 209 aa protein (NbMIG21p) that does not share any homology with annotated proteins. NbMIG21p was demonstrated to contain a nucleolus localization signal (NoLS). Colocalization studies with fibrillarin and coilin, nucleolus and Cajal body marker proteins, revealed that NbMIG21p is distributed among these subnuclear structures. Our results show that recombinant NbMIG21 possesses DNA-binding properties. Similar to a gaseous methanol effect, an increased NbMIG21 expression leads to downregulation of the nuclear import of proteins with nuclear localization signals (NLSs), as was demonstrated with the GFP-NLS model protein. Moreover, upregulated NbMIG21 expression facilitates tobacco mosaic virus (TMV) intercellular transport and reproduction. We identified an NbMIG21 promoter (PrMIG21) and showed that it is methanol sensitive; thus, the induction of NbMIG21 mRNA accumulation occurs at the level of transcription. Our findings suggest that methanol-activated NbMIG21 might participate in creating favorable conditions for viral reproduction and spread.

3.
Int J Mol Sci ; 24(23)2023 Nov 23.
Artigo em Inglês | MEDLINE | ID: mdl-38068987

RESUMO

Nanocarriers are widely used for efficient delivery of different cargo into mammalian cells; however, delivery into plant cells remains a challenging issue due to physical and mechanical barriers such as the cuticle and cell wall. Here, we discuss recent progress on biodegradable and biosafe nanomaterials that were demonstrated to be applicable to the delivery of nucleic acids into plant cells. This review covers studies the object of which is the plant cell and the cargo for the nanocarrier is either DNA or RNA. The following nanoplatforms that could be potentially used for nucleic acid foliar delivery via spraying are discussed: mesoporous silica nanoparticles, layered double hydroxides (nanoclay), carbon-based materials (carbon dots and single-walled nanotubes), chitosan and, finally, cell-penetrating peptides (CPPs). Hybrid nanomaterials, for example, chitosan- or CPP-functionalized carbon nanotubes, are taken into account. The selected nanocarriers are analyzed according to the following aspects: biosafety, adjustability for the particular cargo and task (e.g., organelle targeting), penetration efficiency and ability to protect nucleic acid from environmental and cellular factors (pH, UV, nucleases, etc.) and to mediate the gradual and timely release of cargo. In addition, we discuss the method of application, experimental system and approaches that are used to assess the efficiency of the tested formulation in the overviewed studies. This review presents recent progress in developing the most promising nanoparticle-based materials that are applicable to both laboratory experiments and field applications.


Assuntos
Peptídeos Penetradores de Células , Quitosana , Nanopartículas , Nanotubos de Carbono , Ácidos Nucleicos , DNA , Sistemas de Liberação de Medicamentos/métodos , Ácidos Nucleicos/genética , Células Vegetais
4.
Int J Mol Sci ; 24(16)2023 Aug 16.
Artigo em Inglês | MEDLINE | ID: mdl-37629021

RESUMO

Reversibly glycosylated polypeptides (RGPs) have been identified in many plant species and play an important role in cell wall formation, intercellular transport regulation, and plant-virus interactions. Most plants have several RGP genes with different expression patterns depending on the organ and developmental stage. Here, we report on four members of the RGP family in N. benthamiana. Based on a homology search, NbRGP1-3 and NbRGP5 were assigned to the class 1 and class 2 RGPs, respectively. We demonstrated that NbRGP1-3 and 5 mRNA accumulation increases significantly in response to tobacco mosaic virus (TMV) infection. Moreover, all identified class 1 NbRGPs (as distinct from NbRGP5) suppress TMV intercellular transport and replication in N. benthamiana. Elevated expression of NbRGP1-2 led to the stimulation of callose deposition at plasmodesmata, indicating that RGP-mediated TMV local spread could be affected via a callose-dependent mechanism. It was also demonstrated that NbRGP1 interacts with TMV movement protein (MP) in vitro and in vivo. Therefore, class 1 NbRGP1-2 play an antiviral role by impeding intercellular transport of the virus by affecting plasmodesmata callose and directly interacting with TMV MP, resulting in the reduced viral spread and replication.


Assuntos
Vírus do Mosaico do Tabaco , /genética , Peptídeos , Glicosilação , Antivirais
5.
Front Plant Sci ; 14: 1224958, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37534286

RESUMO

Viral infection, which entails synthesis of viral proteins and active reproduction of the viral genome, effects significant changes in the functions of many intracellular systems in plants. Along with these processes, a virus has to suppress cellular defense to create favorable conditions for its successful systemic spread in a plant. The virus exploits various cellular factors of a permissive host modulating its metabolism as well as local and systemic transport of macromolecules and photoassimilates. The Nicotiana benthamiana stress-induced gene encoding Kunitz peptidase inhibitor-like protein (KPILP) has recently been shown to be involved in chloroplast retrograde signaling regulation and stimulation of intercellular transport of macromolecules. In this paper we demonstrate the key role of KPILP in the development of tobamovius infection. Systemic infection of N. benthamiana plants with tobacco mosaic virus (TMV) or the closely related crucifer-infecting tobamovirus (crTMV) induces a drastic increase in KPILP mRNA accumulation. KPILP knockdown significantly reduces the efficiency of TMV and crTMV intercellular transport and reproduction. Plants with KPILP silencing become partially resistant to tobamovirus infection. Therefore, KPILP could be regarded as a novel proviral factor in the development of TMV and crTMV infection in N. benthamiana plants.

6.
Int J Hyg Environ Health ; 253: 114237, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37544043

RESUMO

Environmental exposure to multiple metals and metalloids is widespread, leading to a global concern relating to the adverse health effects of mixed-metals exposure, especially in young children living around industrial areas. This study aimed to quantify the concentrations of essential and potentially toxic elements in blood and to examine the potential associations between multiple elements exposures, growth determinants, and liver and kidney function biomarkers in children living in several industrial areas in Dhaka, Bangladesh. The blood distribution of 20 trace elements As, Ag, Bi, Br, Cd, Co, Cr, Cu, I, Mn, Hg, Mo, Ni, Pb, Se, Sb, Tl, V, U, and Zn, growth determinants such as body mass index and body fats, blood pressure, liver and kidney injury biomarkers including serum alanine aminotransferase and alkaline phosphatase activities, serum calcium, and creatinine levels, blood urea nitrogen, and hemoglobin concentrations, and glomerular filtration rate were measured in 141 children, aged six to 16 years. Among these elements, blood concentrations of Ag, U, V, Cr, Cd, Sb, and Bi were measured below LOQs and excluded from subsequent statistical analysis. This comprehensive study revealed that blood concentrations of these elements in children, living in industrial areas, exceeded critical reference values to varying extents; elevated exposure to As, Pb, Br, Cu, and Se was found in children living in multiple industrial areas. A significant positive association between elevated blood Tl concentration and obesity (ß = 0.300, p = 0.007) and an inverse relationship between lower As concentration and underweight (ß = -0.351, p < 0.001) compared to healthy weight children indicate that chronic exposure to Tl and As may influence the metabolic burden and physical growth in children. Concentration-dependent positive associations were observed between the blood concentrations of Cu, Se, and Br and hepatic- and renal dysfunction biomarkers, an inverse association with blood Mo and I level, however, indicates an increased risk of Cu, Se, and Br-induced liver and kidney toxicity. Further in-depth studies are warranted to elucidate the underlying mechanisms of the observed associations. Regular biomonitoring of elemental exposures is also indispensable to regulate pollution in consideration of the long-term health effects of mixed-elements exposure in children.


Assuntos
Cádmio , Oligoelementos , Humanos , Criança , Pré-Escolar , Cádmio/análise , Chumbo/análise , Bangladesh , Oligoelementos/metabolismo , Fígado/química , Fígado/metabolismo , Rim/química
7.
Front Plant Sci ; 13: 1041867, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36438111

RESUMO

Plant viruses use a variety of strategies to infect their host. During infection, viruses cause symptoms of varying severity, which are often associated with altered leaf pigmentation due to structural and functional damage to chloroplasts that are affected by viral proteins. Here we demonstrate that Nicotiana benthamiana Kunitz peptidase inhibitor-like protein (KPILP) gene is induced in response to potato virus X (PVX) infection. Using reverse genetic approach, we have demonstrated that KPILP downregulates expression of LHCB1 and LHCB2 genes of antenna light-harvesting complex proteins, HEMA1 gene encoding glutamyl-tRNA reductase, which participates in tetrapyrrole biosynthesis, and RBCS1A gene encoding RuBisCO small subunit isoform involved in the antiviral immune response. Thus, KPILP is a regulator of chloroplast retrograde signaling system during developing PVX infection. Moreover, KPILP was demonstrated to affect carbon partitioning: reduced glucose levels during PVX infection were associated with KPILP upregulation. Another KPILP function is associated with plasmodesmata permeability control. Its ability to stimulate intercellular transport of reporter 2xGFP molecules indicates that KPILP is a positive plasmodesmata regulator. Moreover, natural KPILP glycosylation is indispensable for manifestation of this function. During PVX infection KPILP increased expression leads to the reduction of plasmodesmata callose deposition. These results could indicate that KPILP affects plasmodesmata permeability via callose-dependent mechanism. Thus, virus entering a cell and starting reproduction triggers KPILP expression, which leads to downregulation of nuclear-encoded chloroplast genes associated with retrograde signaling, reduction in photoassimilates accumulation and increase in intercellular transport, creating favorable conditions for reproduction and spread of viral infection.

8.
Proc Natl Acad Sci U S A ; 119(31): e2104906119, 2022 08 02.
Artigo em Inglês | MEDLINE | ID: mdl-35878030

RESUMO

The federal statistical system is experiencing competing pressures for change. On the one hand, for confidentiality reasons, much socially valuable data currently held by federal agencies is either not made available to researchers at all or only made available under onerous conditions. On the other hand, agencies which release public databases face new challenges in protecting the privacy of the subjects in those databases, which leads them to consider releasing fewer data or masking the data in ways that will reduce their accuracy. In this essay, we argue that the discussion has not given proper consideration to the reduced social benefits of data availability and their usability relative to the value of increased levels of privacy protection. A more balanced benefit-cost framework should be used to assess these trade-offs. We express concerns both with synthetic data methods for disclosure limitation, which will reduce the types of research that can be reliably conducted in unknown ways, and with differential privacy criteria that use what we argue is an inappropriate measure of disclosure risk. We recommend that the measure of disclosure risk used to assess all disclosure protection methods focus on what we believe is the risk that individuals should care about, that more study of the impact of differential privacy criteria and synthetic data methods on data usability for research be conducted before either is put into widespread use, and that more research be conducted on alternative methods of disclosure risk reduction that better balance benefits and costs.


Assuntos
Segurança Computacional , Confidencialidade , Privacidade , Coleta de Dados , Revelação , Governo Federal , Órgãos Governamentais
9.
Plants (Basel) ; 11(12)2022 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-35736681

RESUMO

Plants are a promising platform for recombinant protein production. Here we propose a novel approach to increase the level of viral vector-mediated recombinant protein synthesis. This approach is based on the hypothesis that antiviral protection is weakened during the antibacterial cellular response. We suggested that introduced to the cell foreign nuclear localized proteins, including effectors such as bacterial nucleomodulins, can interfere with the import of cellular nuclear proteins and launch antibacterial defense reactions, creating favorable conditions for cytoplasmic virus reproduction. Here, we performed synthesis of an artificial nuclear protein-red fluorescent protein (mRFP) fused with a nuclear localization sequence (NLS)-in plant cells as a mimetic of a bacterial effector. Superproduction of mRFP:NLS induced Nicotiana benthamiana γ-thionin (NbγThio) mRNA accumulation. Both NLS-containing protein synthesis and increased NbγThio expression stimulated reproduction of the viral vector based on the genome of crucifer-infecting tobacco mosaic virus (crTMV) in N. benthamiana leaves. We isolated the NbγThio gene promoter (PrγThio) and showed that PrγThio activity sharply increased in response to massive synthesis of GFP fused with NLS. We conclude that NLS-induced PrγThio activation and increased accumulation of Nbγthio mRNA led to the stimulation of GFP expression from crTMV: GFP vector in the transient expression system.

10.
Int J Mol Sci ; 23(12)2022 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-35743083

RESUMO

Formaldehyde (FA) is the simplest aldehyde present both in the environment and in living organisms. FA is an extremely reactive compound capable of protein crosslinking and DNA damage. For a long time, FA was considered a "biochemical waste" and a by-product of normal cellular metabolism, but in recent decades the picture has changed. As a result, the need arose for novel instruments and approaches to monitor and measure not only environmental FA in water, cosmetics, and household products, but also in food, beverages and biological samples including cells and even organisms. Despite numerous protocols being developed for in vitro and in cellulo FA assessment, many of them have remained at the "proof-of-concept" stage. We analyze the suitability of different methods developed for non-biological objects, and present an overview of the recently developed approaches, including chemically-synthesized probes and genetically encoded FA-sensors for in cellulo and in vivo FA monitoring. We also discuss the prospects of classical methods such as chromatography and spectrophotometry, and how they have been adapted in response to the demand for precise, selective and highly sensitive evaluation of FA concentration fluctuations in biological samples. The main objectives of this review is to summarize data on the main approaches for FA content measurement in liquid biological samples, pointing out the advantages and disadvantages of each method; to report the progress in development of novel molecules suitable for application in living systems; and, finally, to discuss genetically encoded FA-sensors based on existing natural biological FA-responsive elements.


Assuntos
Dano ao DNA , Formaldeído , Formaldeído/química
11.
J Trace Elem Med Biol ; 68: 126804, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34111708

RESUMO

BACKGROUND: Knowledge of trace element stability during sample handling and preservation is a prerequisite to produce reliable test results in clinical trace element analysis. METHOD: An alkaline dissolution method has been developed using inductively coupled plasma mass spectrometry to quantify eighteen trace element concentrations: vanadium, chromium, manganese, cobalt, nickel, copper, zinc, arsenic, selenium, bromine, molybdenum, cadmium, antimony, iodine, mercury, thallium, lead, and bismuth in human blood, using a small sample volume of 0.1 mL. The study evaluated the comparative effects of storage conditions on the stability of nutritionally essential and non-essential elements in human blood and plasma samples stored at three different temperatures (4 °C, -20 °C and -80 °C) over a one-year period, and analysed at multiple time points. The distribution of these elements between whole blood and plasma and their distribution relationships are illustrated using blood samples from 66 adult donors in Queensland. RESULTS: The refrigeration and freezing of blood and plasma specimens proved to be suitable storage conditions for many of the trace elements for periods up to six months, with essentially unchanged concentrations. Substantially consistent recoveries were obtained by preserving specimens at -20 °C for up to one year. Ultra-freezing of the specimens at -80 °C did not improve stability; but appeared to result in adsorption and/or precipitation of some elements, accompanied by a longer sample thawing time. A population sample study revealed significant differences between the blood and plasma concentrations of six essential elements and their relationships also varied significantly for different elements. CONCLUSION: Blood and plasma specimens can be reliably stored at 4 °C for six months or kept frozen at -20 °C up to one year to obtain high quality test results of trace elements.


Assuntos
Selênio , Oligoelementos , Adulto , Cádmio , Cromo , Humanos , Zinco
12.
Artigo em Inglês | MEDLINE | ID: mdl-33800753

RESUMO

The levels of trace elements in whole blood and plasma have been widely used for assessing nutritional status and monitoring exposure and can vary widely in populations from different geographical regions. In this study, whole blood samples (n = 120) and plasma samples (n = 120) were obtained from healthy donors attending the Red Cross Blood Bank (Queensland Red Cross Blood Service), which provided information for age and sex. There were 71 males (age range: 19-73 years) and 49 females (age range: 18-72 years) for whole blood samples, and 59 males (age range: 19-81 years) and 61 females (age range: 19-73 years) for plasma samples. The main aim of the study was to provide information on blood reference levels of 21 trace elements (Ag, Al, As, Bi, Br, Cd, Co, Cr, Cu, Hg, I, Mn, Mo, Ni, Pb, Sb, Se, Tl, U, V, Zn) in Queensland. The study also aimed to assess differences in trace element blood levels between males and females and the effect of age. The trace element levels in blood samples were analysed using inductively coupled plasma mass spectrometry (ICP-MS) and the standard reference materials of Seronorm (Trace Elements Whole Blood) and UTAK (Trace Elements Serum) were used for quality control and assurance. The study found wide variations of trace element levels in whole blood and plasma, and generally the levels were comparable to other countries. No detectable levels were found for Bi, Cr, U and V in whole blood, but V levels were found in plasma samples. There were significant differences between males and females for whole blood Cu (p < 0.001), I (p = 0.009), Tl (p = 0.016) and Zn (p = 0.016). Significant differences were also found for plasma Cu (p < 0.001) and Se (p = 0.003) between males and females. There were trends of increased levels of blood Pb, Se and Zn with age. The study has provided further information on a wide range of trace elements in blood as reference levels for Queensland and Australia which are currently lacking.


Assuntos
Oligoelementos , Austrália , Feminino , Masculino , Plasma , Queensland , Análise Espectral , Oligoelementos/análise
13.
Front Plant Sci ; 11: 959, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32670343

RESUMO

During their evolution, viruses acquired genes encoding movement protein(s) (MPs) that mediate the intracellular transport of viral genetic material to plasmodesmata (Pd) and initiate the mechanisms leading to the increase in plasmodesmal permeability. Although the current view on the role of the viral MPs was primarily formed through studies on tobacco mosaic virus (TMV), the function of its MP has not been fully elucidated. Given the intercellular movement of MPs independent of genomic viral RNA (vRNA), this characteristic may induce favorable conditions ahead of the infection front for the accelerated movement of the vRNA (i.e. the MP plays a role as a "conditioner" of viral intercellular spread). This idea is supported by (a) the synthesis of MP from genomic vRNA early in infection, (b) the Pd opening and the MP transfer to neighboring cells without formation of the viral replication complex (VRC), and (c) the MP-mediated movement of VRCs beyond the primary infected cell. Here, we will consider findings that favor the TMV MP as a "conditioner" of enhanced intercellular virus movement. In addition, we will discuss the mechanism by which TMV MP opens Pd for extraordinary transport of macromolecules. Although there is no evidence showing direct effects of TMV MP on Pd leading to their dilatation, recent findings indicate that MPs exert their influence indirectly by modulating Pd external and structural macromolecules such as callose and Pd-associated proteins. In explaining this phenomenon, we will propose a mechanism for TMV MP functioning as a conditioner for virus movement.

14.
Plants (Basel) ; 8(12)2019 Dec 12.
Artigo em Inglês | MEDLINE | ID: mdl-31842374

RESUMO

Plant cells form a multicellular symplast via cytoplasmic bridges called plasmodesmata (Pd) and the endoplasmic reticulum (ER) that crosses almost all plant tissues. The Pd proteome is mainly represented by secreted Pd-associated proteins (PdAPs), the repertoire of which quickly adapts to environmental conditions and responds to biotic and abiotic stresses. Although the important role of Pd in stress-induced reactions is universally recognized, the mechanisms of Pd control are still not fully understood. The negative role of callose in Pd permeability has been convincingly confirmed experimentally, yet the roles of cytoskeletal elements and many PdAPs remain unclear. Here, we discuss the contribution of each protein component to Pd control. Based on known data, we offer mechanistic models of mature leaf Pd regulation in response to stressful effects.

15.
Sci Rep ; 9(1): 16168, 2019 11 07.
Artigo em Inglês | MEDLINE | ID: mdl-31700025

RESUMO

Studies of breast cancer therapy have examined the improvement of bispecific trastuzumab/pertuzumab antibodies interacting simultaneously with two different epitopes of the human epidermal growth factor receptor 2 (HER2). Here, we describe the creation and production of plant-made bispecific antibodies based on trastuzumab and pertuzumab plant biosimilars (bi-TPB-PPB). Using surface plasmon resonance analysis of bi-TPB-PPB antibodies binding with the HER2 extracellular domain, we showed that the obtained Kd values were within the limits accepted for modified trastuzumab and pertuzumab. Despite the ability of bi-TPB-PPB antibodies to bind to Fcγ receptor IIIa and HER2 oncoprotein on the cell surface, a proliferation inhibition assay did not reveal any effect until α1,3-fucose and ß1,2-xylose in the Asn297-linked glycan were removed. Another approach to activating bi-TPB-PPB may be associated with the use of disulfiram (DSF) a known aldehyde dehydrogenase 2 (ALDH2) inhibitor. We found that disulfiram is capable of killing breast cancer cells with simultaneous formaldehyde accumulation. Furthermore, we investigated the capacity of DSF to act as an adjuvant for bi-TPB-PPB antibodies. Although the content of ALDH2 mRNA was decreased after BT-474 cell treatment with antibodies, we only observed cell proliferation inhibiting activity of bi-TPB-PPB in the presence of disulfiram. We concluded that disulfiram can serve as a booster and adjuvant for anticancer immunotherapy.


Assuntos
Anticorpos Monoclonais Humanizados , Medicamentos Biossimilares , Proliferação de Células/efeitos dos fármacos , Dissulfiram , Formaldeído/metabolismo , Imunoterapia , Neoplasias , Trastuzumab , Anticorpos Monoclonais Humanizados/química , Anticorpos Monoclonais Humanizados/farmacologia , Medicamentos Biossimilares/química , Medicamentos Biossimilares/farmacologia , Linhagem Celular Tumoral , Dissulfiram/química , Dissulfiram/farmacologia , Ensaios de Seleção de Medicamentos Antitumorais , Humanos , Neoplasias/metabolismo , Neoplasias/patologia , Neoplasias/terapia , Trastuzumab/química , Trastuzumab/farmacologia
16.
Curr Med Chem ; 26(3): 381-395, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-29231134

RESUMO

BACKGROUND: A cost-effective plant platform for therapeutic monoclonal antibody production is both flexible and scalable. Plant cells have mechanisms for protein synthesis and posttranslational modification, including glycosylation, similar to those in animal cells. However, plants produce less complex and diverse Asn-attached glycans compared to animal cells and contain plant-specific residues. Nevertheless, plant-made antibodies (PMAbs) could be advantageous compared to those produced in animal cells due to the absence of a risk of contamination from nucleic acids or proteins of animal origin. OBJECTIVE: In this review, the various platforms of PMAbs production are described, and the widely used transient expression system based on Agrobacterium-mediated delivery of genetic material into plant cells is discussed in detail. RESULTS: We examined the features of and approaches to humanizing the Asn-linked glycan of PMAbs. The prospects for PMAbs in the prevention and treatment of human infectious diseases have been illustrated by promising results with PMAbs against human immunodeficiency virus, rotavirus infection, human respiratory syncytial virus, rabies, anthrax and Ebola virus. The pre-clinical and clinical trials of PMAbs against different types of cancer, including lymphoma and breast cancer, are addressed. CONCLUSION: PMAb biosafety assessments in patients suggest that it has no side effects, although this does not completely remove concerns about the potential immunogenicity of some plant glycans in humans. Several PMAbs at various developmental stages have been proposed. Promise for the clinical use of PMAbs is aimed at the treatment of viral and bacterial infections as well as in anti-cancer treatment.


Assuntos
Planticorpos/imunologia , Planticorpos/uso terapêutico , Agrobacterium/genética , Animais , Anticorpos Monoclonais Humanizados/imunologia , Glicosilação , Humanos
17.
Front Plant Sci ; 9: 1623, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30473703

RESUMO

Until recently, plant-emitted methanol was considered a biochemical by-product, but studies in the last decade have revealed its role as a signal molecule in plant-plant and plant-animal communication. Moreover, methanol participates in metabolic biochemical processes during growth and development. The purpose of this review is to determine the impact of methanol on the growth and immunity of plants. Plants generate methanol in the reaction of the demethylation of macromolecules including DNA and proteins, but the main source of plant-derived methanol is cell wall pectins, which are demethylesterified by pectin methylesterases (PMEs). Methanol emissions increase in response to mechanical wounding or other stresses due to damage of the cell wall, which is the main source of methanol production. Gaseous methanol from the wounded plant induces defense reactions in intact leaves of the same and neighboring plants, activating so-called methanol-inducible genes (MIGs) that regulate plant resistance to biotic and abiotic factors. Since PMEs are the key enzymes in methanol production, their expression increases in response to wounding, but after elimination of the stress factor effects, the plant cell should return to the original state. The amount of functional PMEs in the cell is strictly regulated at both the gene and protein levels. There is negative feedback between one of the MIGs, aldose epimerase-like protein, and PME gene transcription; moreover, the enzymatic activity of PMEs is modulated and controlled by PME inhibitors (PMEIs), which are also induced in response to pathogenic attack.

18.
Bioessays ; 40(12): e1800136, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-30370669

RESUMO

Malignant cells are characterized by an increased content of endogenous formaldehyde formed as a by-product of biosynthetic processes. Accumulation of formaldehyde in cancer cells is combined with activation of the processes of cellular formaldehyde clearance. These mechanisms include increased ALDH and suppressed ADH5/FDH activity, which oncologists consider poor and favorable prognostic markers, respectively. Here, the sources and regulation of formaldehyde metabolism in cancer cells are reviewed. The authors also analyze the participation of oncoproteins such as fibulins, FGFR1, HER2/neu, FBI-1, and MUC1-C in the control of genes related to formaldehyde metabolism, suggesting the existence of two mutually exclusive processes in cancer cells: 1) production and 2) oxidation and elimination of formaldehyde from the cell. The authors hypothesize that the study of the anticancer properties of disulfiram and alpha lipoic acid - which affect the balance of formaldehyde in the body - may serve as the basis of future anticancer therapy.


Assuntos
Biomarcadores Tumorais/genética , Formaldeído/metabolismo , Neoplasias/imunologia , Neoplasias/metabolismo , Inibidores de Acetaldeído Desidrogenases , Aldeído Desidrogenase/antagonistas & inibidores , Aldeído Desidrogenase/metabolismo , Antineoplásicos/farmacologia , Biomarcadores Tumorais/metabolismo , Sistema Enzimático do Citocromo P-450/genética , Sistema Enzimático do Citocromo P-450/metabolismo , Dissulfiram/farmacologia , Regulação para Baixo , Humanos , Redes e Vias Metabólicas , Neoplasias/tratamento farmacológico , Neoplasias/genética , Oxirredução , Prognóstico , Ácido Tióctico/metabolismo
19.
Sci Total Environ ; 621: 1475-1484, 2018 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-29107373

RESUMO

The use of pesticides to manage pest problems for crop protection is common practice around the world, and their accumulation in soils and contamination of water bodies is a global environmental problem. In Australia, an organomercury (Hg)-based fungicide is the most popular for control of pineapple disease of sugarcane. However, the presence of Hg is of great concern because of potential adverse effects in the environment. The purpose of this work was to evaluate the residual levels of Hg in soils of sugarcane cultivation from a catchment in North Queensland (Australia). Mercury was surveyed in soils close to the Tully River at 3 different depths (100, 200 and 300mm). Additionally, total Hg (THg) and the labile fraction of Hg in water (measured by the diffusive gradient in thin film technique) were determined in the Tully River. A pristine site, the Tully Gorge National Park upstream of sugarcane fields, was selected for background Hg concentration estimation. In soils, Hg levels ranged from 18 to 264µgkg-1, with one of the soil samples being almost 10 times higher than at other sites at the surface level (199µgkg-1). Total and labile concentrations of Hg in water increased from the Hg-elevated soil sampling sites (0.085µgL-1 and 0.061µgL-1) to downstream sites (0.082µgL-1 and 0.066µgL-1), which is likely due to agricultural runoff. Indeed, except for the upstream control site, the THg concentration in water is over the limit permitted by the Australian freshwater quality guideline for protection of 99% species (0.06µgL-1). These findings point to the need to perform further research to reveal the mechanisms for release of Hg from soil and whether this might be causing important adverse effects to the Great Barrier Reef located in front of this river catchment.

20.
Front Neurosci ; 11: 651, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29249928

RESUMO

The healthy human body contains small amounts of metabolic formaldehyde (FA) that mainly results from methanol oxidation by pectin methylesterase, which is active in a vegetable diet and in the gastrointestinal microbiome. With age, the ability to maintain a low level of FA decreases, which increases the risk of Alzheimer's disease and dementia. It has been shown that 1,2-dithiolane-3-pentanoic acid or alpha lipoic acid (ALA), a naturally occurring dithiol and antioxidant cofactor of mitochondrial α-ketoacid dehydrogenases, increases glutathione (GSH) content and FA metabolism by mitochondrial aldehyde dehydrogenase 2 (ALDH2) thus manifests a therapeutic potential beyond its antioxidant property. We suggested that ALA can contribute to a decrease in the FA content of mammals by acting on ALDH2 expression. To test this assumption, we administered ALA in mice in order to examine the effect on FA metabolism and collected blood samples for the measurement of FA. Our data revealed that ALA efficiently eliminated FA in mice. Without affecting the specific activity of FA-metabolizing enzymes (ADH1, ALDH2, and ADH5), ALA increased the GSH content in the brain and up-regulated the expression of the FA-metabolizing ALDH2 gene in the brain, particularly in the hippocampus, but did not impact its expression in the liver in vivo or in rat liver isolated from the rest of the body. After ALA administration in mice and in accordance with the increased content of brain ALDH2 mRNA, we detected increased ALDH2 activity in brain homogenates. We hypothesized that the beneficial effects of ALA on patients with Alzheimer's disease may be associated with accelerated ALDH2-mediated FA detoxification and clearance.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...